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Abstract 

One of the tasks performed routinely by the Electromagnetics and Plasma Physics  Analysis Department 
at Sandia National Laboratories is  analyzing the effects of direct-strike lightning on  Faraday  cages that 
protect sensitive items. The  Faraday cages  analyzed thus far  have  many features in common. This report 
is an  attempt  to collect equations and other information that have  been routinely used in the past in order 
to facilitate future analysis. 
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Useful Equations for Calculating the Induced  Voltage 

Inside a Faraday  Cage that has  been Struck by Lightning 

1 Introduction 

This report contains a collection of equations and other information used to analyze the protection 
provided  by a Faraday cage against the effects of worst-case, direct-strike lightning. There are  three 
characteristics of the lightning waveform that are of importance in the analysis: the peak current,  the 
maximum rate of current rise and the continuing current. Worst-case lightning (one percentile) has a peak 
current ( I )  of 200 k A ,  a maximum rate of current rise (X/%) of 400 k A / p  and a continuing current of 
800 A that lasts for 0.5 seconds [l]. 

The Faraday cages that we have analyzed do not consist of a continuous metallic shell surrounding 
sensitive contents. Rather,  they consist of separate, individual metal pieces that are  attached to one 
another in some manner to enclose the contents. One  example of a Faraday cage is shown in Figure 1. 
The sensitive contents are placed on a metal platform and a metal cover is placed  over them. The cover  is 
attached to the platform by bolts that pass through a flange  welded to  the cover’s bottom. In  the Faraday 
cage example shown in Figure 2, the contents are placed inside an open metal  can, which  is then covered 
by a metal lid. In the  third example, shown in Figure 3, for ease of handling, the metal cover  from the first 
example is made of two halves that are  attached to each other in  some manner. Instead of using bolts 
to hold the cover to the platform, metal pieces that  rotate over the flange are used. The Faraday cages 
that we have  observed  usually  have a mechanism that indicates if the cage has content, or if it is empty. 
This mechanism  could be as simple as the viewing port, shown  in Figure 1, or could be more  complex,  like 
the plunger  shown in Figure 2. (The contents push the plunger so that  it protrudes from the  top of the 
Faraday cage, indicating that something is inside.) 

When designing a Faraday cage to protect sensitive contents, the presence of any metallic penetration 
that is surrounded by insulation as it passes through the wall of the Faraday cage, is strongly discouraged 
for the following  reason. Lightning could attach to the metallic penetration and drive a high current 
through the Faraday cage onto  the contents until the voltage on the  penetration becomes so high that 
breakdown  occurs  across the surrounding insulation to the cage. The high current and subsequent high 
voltage on sensitive contents is a situation that must be avoided. Therefore, as an example, we must ensure 
that the plunger  shown in Figure 2 is an insulator and not made of metal. Once metallic penetrations have 
been eliminated from the design, the possibility of lightning penetrating the Faraday cage directly is not of 
concern.  Voltages due to lightning can still be induced inside the Faraday cage,  however, if conductor loops 
inside  link magnetic flux,  which penetrates  the cage through its various joints and apertures.  The derivative 
of linked  magnetic  flux with respect to time causes a voltage to develop  between  various conductors within 
the cage. In the following sections we will  find  expressions  for this voltage due to different types of 
apertures. Determining the inside voltage is a necessary step in determining if the contents are protected 
sficiently by the Faraday cage. 

2 Long Slots 

2.1 PEC Walls 

One type of aperture commonly  found in a Faraday cage, particularly where the various metal pieces 
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that make up the cage attach  to one another, is  a  long slot, an example of which is the bolted joint shown 
in Figure 4. The physical characteristics of the slot are  its length (2h) ,  which  in  a bolted joint is the 
bolt-to-bolt spacing, its  depth (d) ,  and  its width (w), which is usually  caused  by imperfections in mating 
between the two surfaces of the  joint. For the following analysis to hold, the length of the slot must be large 
compared to  its  depth  and (for the finitely-conducting wall and conducting gasket  cases) the width must be 
small compared to  its depth. Initially, we assume that  the walls of the slot are perfect conductors, that 
there is no gasket material in the slot and  that  the bolts at  the end of the slot have  a  negligible inductance 
(so the voltage  across them is  zero - they can be modeled as short-circuits). As a  worst-case we assume 
that lightning current attaches to one side of the  slot, centered between the two terminating bolts and  the 
return is on the opposite side of the slot. Also as a  worst-case, we do not allow  breakdown to occur across 
the slot, which  would  clamp the maximum voltage available to be the voltage at which the breakdown 
occurs. 

First  let us  look at Figures 5 and 6 to understand what is happening physically.  As the current divides 
and flows along the  top of the slot, through the bolts and back  along the  bottom of the slot, it generates 
a magnetic field in accordance with a right-hand rule as shown in Figure 5. Note that in the figure the 
magnetic field  flows into  the right  half of the slot and out the left  half. Figure 6 shows  a top view of the 
slot and magnetic field. If we think of the slot itself as a conducting loop, as we increase the area of the 
loop by  moving our observation point from the right-hand wall toward the slot center, we  will increase the 
amount of magnetic flux that we intercept and, therefore, increase the voltage  seen across the slot. This 
trend continues until we reach the center of the slot; then, as we continue increasing the area of the loop, 
moving past the center toward the left-hand wall, we begin to intercept magnetic flux  flowing out of the 
slot, decreasing the net flux  flowing across the loop  surface. This causes the voltage  seen  across the slot 
to decrease until it reaches  zero at  the left-hand wall (the  net flux  flowing  across the entire slot is zero). 
Thus,  the voltage at the center of the slot is the maximum voltage seen  along the  length of the slot. It is 
also the maximum  voltage  seen inside the Faraday cage due to flux entering this  particular slot. Since the 
loop formed  by  half the slot intercepts all of the flux  flowing through it, a singleturn conducting loop, like 
the one  shown in Figure 6 ,  can generate the same maximum  voltage as the slot (if it intercepts all of the 
flux), but will  never  exceed it.  Thus, we can use the maximum slot voltage as an upper voltage bound of 
the Faraday cage. 

, 

The slot can be modeled in terms of an inductance per unit length, which is the parallel combination 
of the gap inductance per unit length L g ,  and  the external inductance per unit length Lextr [3, 41. These 
quantities are expressed  in terms of the physical slot parameters as 

7T 
Leztr = PO- 

a0 
( 2 )  

where 
Q 0 = 2 1 n ( 3 + 2 ( h 2 - 3  

is the  antenna fatness parameter, and p0 is the permeability of free space (47r x low7 H/m).  The  total 
inductance per unit length is - -  

which leads to the simplified transmission line modk'of  the slot shown in Figure 7 (A represents a 
small distance along the transmission line). The  standard transmission line  model could be simplified 
by  neglecting the distributed capacitance and using a lumped circuit approximation since the lightning 
waveform has such low frequency content (see Appendix A for more details). An observer at  the center of 
the slot would  see  two inductances Ltoth in parallel, or a total slot inductance of 

1 
Lslot = ZLtoth (4) 

* .  
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If lightning attaches to  the center point of the slot,  the peak voltage at the center of the slot can be related 
to  the lightning current by 

8I 
V p e c  = Lslot - at ( 5 )  

As an example, and one that we  will build  on throughout this section, we  will  find the maximum 
voltage inside the Faraday cage due to a slot having a width of w = 1.0 mm, a depth of d = 25.0 mm and 
a bolt spacing of 2h = 500.0 mm (these are typical dimensions in the Faraday cages encountered thus 
far).  With these slot parameters, Lgap = 50.3 nH/m, QO = 11.9 and Leztr = 331 nH/m. The parallel 
combination of Lgap and Leztr gives a total inductance per unit length of Ltot = 43.6 nH/m, a total slot 
inductance of Lslot = 5.45 nH and a maximum voltage of VPec = 2.2 kV. 

2.2 Finite  Conducting Walls 

Next, we  will relax the assumption that  the walls of the slot are perfect electric conductors. Therefore, 
the current flowing  on the walls of the slot is no longer constrained to remain on the surface, but can 
penetrate some depth  into  the wall. This allows  more magnetic field to penetrate  the slot and increases 
V,,, calculated above by an additional term I&. Let us again assume that worst-case lightning current 
attaches to the center of a slot whose  walls  now  have a finite conductivity. Assume that  the current rises 
linearly in time ( t )  from 0 kA at t = 0 to 200 kA at t = r,. If the slot is symmetrical about  the  current 
source, as is the case here, the incident current will  divide  evenly  between the two  legs of the slot with half 
flowing  in the slot to the right of the current source (I$ = 100 kA) and half  flowing in the slot to  the left of 
the current source (I; = 100 kA).  The magnetic field  on the walls as a function of time is 

Ho(t) = h i -  
t 

7 ,  

where h i  = I$/d (recall that d is the slot depth). 

If a wall of the slot is made of magnetic material, such as carbon steel, the voltage evaluated at the 
time t = r, due to the magnetic material characteristics of the wall is [5] 

where 

and 

KFt accounts for  two facts related to  the permeability of the wall material, namely that  it has a high 
permeability at low  values of HO and  the permeability of free space at high  values of Ho, after the material 
has saturated. B, is the value of magnetic flux density where saturation occurs and is approximately 2.0 
Tesla for most materials of interest. g is the conductivity of the walls. The risetime of the current pulse 
(r,.) is taken to be 0.5 x seconds  in order to remain consistent with the  stated worst-case lightning 
rise rate of 400 kA/ps. Again, h is the half-length of the slot. If both walls of the slot are made of this 
material, Kznt = 2KFt. 

If a wall of the slot is made of a nonmagnetic material, such as aluminum or stainless steel, the voltage 
evaluated at the time t = r,. due to the nonmagnetic material characteristics of the wall is [5] 

* .  

’ .  
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Again if both wal ls  are made of this material, Knt = 2q:y. If one of the walls  is made of magnetic material 
and  the  other of nonmagnetic material, Knt = KFt + yi:y. 

Although the voltage  waveforms associated with Knt and V,,, do not crest precisely at the same time, a 
bound on the  total voltage  in the center of the slot (VmM) may be taken as the sum of and V,,,. Let us 
continue with our  example  from the previous section (h$ = 100  kA/0.025 m = 4.0 X lo6 A/m)  and assume 
that one  wall of the slot is  made of aluminum (6061), which has a conductivity of 2.6 x lo7 (0 - m)-' and 
the other is made of carbon steel, which  has a conductivity of 4 x lo6 (0 - m)-'. For the carbon steel wall 

and 

Therefore, 

4.0 x lo6/ (0.5 x x 4.0 x lo6) 
2.0 + ip04.0 X lo6 

= 738 m/s 

70 = 0.5 x x -po  1 X 4.0 X lo6 (738)2 = 0.228 
T T  6 

= 0.25 X 4.0 X lo6  PO 
/ x  x 0.5 x x 2.6 x lo7 

= 0.35  kV 

The voltage bound is then V,, 5 V,,, + ViFt + = 3.65  kV. 

2.3 Conductive Gasket 

Next we  will look at the effect of including a conductive gasket  in the slot. Let us assume that the 
gasket fills the entire region  between the two slot walls so that it will  have a length of 2h, a width of w and 
a depth of d, the conductivity of the gasket  is  assumed to be og. The  total conductance per unit length 
then is 

d 
G = gg; 

The transmission line  model of the gasketed slot is  shown  in Figure 8. Note that  the gasket  causes 
current to be shunted across the slot as it travels toward the bolts. In  the analysis of Section  2.1, the 
current was constant along the length of the transmission line, which  allowed us to reduce the transmission 
line to a simple inductive circuit, but  this is no longer the case. 

Let  us first calculate the propagation constant y of this transmission line. 

where j = and w is the angular frequency (the time convention  is  assumed to be e+jwt) .  We ignore 
LeztT in this section to make the definition of y consistent with the transverse electromagnetic (TEM) 
propagation constant. The presence of a gasket usually  physically  increases the width of the slot, which 
tends to increase the slot voltage. This effect is offset by the fact that a conductive gasket changes the 
current distribution along the length of the transmission line. Continuing with our example from  above 
(d = 25 mm), but allowing w to increase to 3.0 mm to accommodate the width of the assumed gasket and 
using a typical value of og = lo3 (O-m)-l for gasket conductivity, we obtain G = 8.33 x lo3 (O-m)-'. 
Because of the assumed  increase  in w, Lgap increases to 151 nH/m.  The induced voltages that we are 
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calculating arise from a rapidly changing  magnetic flux. This, in turn, implies that  the highest frequencies 
of the lightning spectrum, which are  due to  the risetime of the lightning waveform  will contribute most to 
the voltage. A reasonable high-frequency limit is  when w = l / r ,  = 2 x lo6 radians/second [2]. At this 
frequency y = d m '  = = (35.5 + j35.5) m-l, which  means that  the magnitude of the 
current falls exponentially (e-?') as we travel from the source towards the bolt. 

Since y is large for a reasonably conducting gasket, the current will  have  fallen to nearly zero  for a 
typical slot before it reaches the bolt for our example), so there will be negligible  reflection  from 
the short circuit formed by the bolt. At high  frequencies, therefore, the transmission line appears  to the 
current source as though  it is infinitely  long and  the maximum voltage is 

where 20 is the characteristic impedance of the transmission line: 

2, = /? 
In our  example, 20 = (4.26 x lod3 + j4.26 x fl so V,, = 426 (1 + j )  kV - a  significant  change  from 
what V,,, would  be. 

If the gasket becomes  more conductive, we may  account  for exponential decay in the  depth direction 
that reduces the voltage even  more as shown in  equation B-1. 

where 

ki = - jwp,  (a, + jwEg) 
and pg and  are respectively, the permeability and permittivity of the gasket material. 

One note of caution: a conductive gasket can be rendered  less  effective if there is a nonconductive 
coating, such as anodization, on the  metal where the gasket is attached. Nonconductive coatings must  be 
scraped off before the gasket is applied. 

2.4 Inductive Slot Terminations 

Thus far in our analysis we have ignored the slot terminations and have  modeled  them as short circuits. 
We  will  now examine the validity of this approximation  for various types of terminations. We  will  confine 
our discussion to slots without  conducting gaskets because, as noted above, if a proper conducting  gasket  is 
used, the current waveform attenuates before it reaches the terminations, rendering them  unimportant. We 
will  also  assume, as an upper bound, that all of the current flows  on the walls of the slot under consideration 
and through  its terminations and  that none of the current flows on the walls of adjacent slots. 

A bolt termination  has  the same configuration as a section of coaxial transmission line as seen in Figure 
9. The inductance of the coaxial section is 

where rin, rout and A, are defined  in Figure 9, and po  is the permeability of free  space. Typical dimensions 
are rin = 5 mm, rmt = 5.5 mm and A, = 15 mm, yielding &,lt = 0.29 nH. This inductance replaces the 
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short circuit at the ends of the slots in Figure 7. Equation 4 now  becomes 
1 

L s l o t  = T(Ltoth i- L b o l t )  

and we see that ignoring the bolt inductance in our  example underestimates the voltage across the slot by 
approximately 3%. 

Another type of device  used to hold the cover onto the platform is the one  shown in Figure 3 and 
shown in cross-section in Figure  10. It consists of a metal piece that  rotates over the flange  once the cover 
is in place. It is often used in place of bolts because there is no need to align the flange bolt holes with the 
tapped holes in the platform and therefore, the Faraday  cage is simpler to assemble. The  inductance of 
such a termination is 

Af A w  
L h d  = p o x  (13) 

Where A,, A,, and A d  are defined in  Figure 10 ( A d  is the thickness of the hold-down  piece  measured into 
the plane of the drawing). Typical dimensions of such  hold-down  pieces are A, = 15 mm, A, = 10 III~I~, 
and A d  = 30 mm, yielding L h d  = 6.3 nH,  which  may  be a significant contributor to  the slot inductance. w e  
can add  the effect of iinite conductivity of the hold-down  device  by  using equation 6 or 7 and  substituting 
A d  for d and Af for h. The voltage due to L h d  is expected to  dominate in this case, however. 

The last type of slot-terminating device that we  will examine, is exemplified  by the clamps  shown in 
Figure 3, which are used to hold  two  halves of a cover together. A  clamp consists of a wire bail attached 
to a lever arm, which is, in turn,  attached to one  half-cover. The wire bail passes  over a hook attached  to 
the other half-cover.  Action of the lever arm draws the two  halves together in a manner  very  much  like a 
ski boot  buckle.  A detail of the clamp is shown in Figure 11. 
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Figure 11. Clamp Detail 
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Figure 12 shows an end view of the two  wires that form the bail. The wires  have a radius of r,, are 
separated from  each other by 2s and  are a distance h, above the metal cover. Approximating the wires as 
being infinite in 2 and neglecting the  curvature of the metal cover we find an expression for the i directed 
magnetic vector potential at any observation point in the z = 0 plane: 

A 
2 -  27r J ( x  + s ) ~  + (y - h,)2 + In d ( x  - s ) ~  + (y - h,)2 [. 

-In d ( x  + s ) ~  + (y + h,)2 - In d ( x  - s ) ~  + (y + hw)2 1 
The inductance per unit length of the clamp can be calculated by the formula 

where the factor of 1/2 accounts for the two  wires in parallel, and where  Tis the rectangular contour shown 
in Figure 12 that travels along the wire surface for one meter in the i direction; to the surface of the metal 
cover in the -e direction; along the metal surface for  one meter in the -2 direction; and finally  back to  the 
wire surface in the 6 direction. This contour was  chosen  over a contour between the two wires  because, 
since the two wires  forming the bail are connected to each other at their ends, the  net flux linking them will 
be zero. All contributions to the integral over the chosen contour are zero, (either because A,  itself  is  zero 
at y = 0, or because the dot product is zero) except for the contribution along the wire  surface. Evaluating 
A, at the wire surface (where x = s and y = h, - r,), making the approximation that r, << s, h, and 
multiplying by the length of the wire (1) we obtain 

Typical parameters for clamps of this style are r, = 1.5 mm, s = 15 mm, h, = 15 mm and 1 = 40 mm 
so that Ldamp = 13.4 nH. In this case the inductance of the terminating clamp is actually larger than 
Loth. 

2.5 Varying the Slot Cross Section 

This subsection indicates how to proceed if the width of the slot varies as a function of depth, which 
might occur in order to accommodate a gasket, for example. Figure 13 shows the side view of a slot having 
three different widths. Two  different gaskets are employed  in the slot. 

The analysis proceeds exactly as before except that Lgap consists of three parallel inductances so that 

where 

w3 
Lgap3 = POT 

as previously  defined, but Lgap2 needs correction terms to account for the vertical surfaces  in the gap 2 
region. The correction terms take the form of inductances in parallel to the original gap inductance so the 
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correction lowers the original inductance value. 
1 d2 1  1 

Assuming that there is  negligible interaction between the vertical surfaces on  the left side and  the vertical 
surfaces on  the right side, 

-=- 
Lgap2  P O W ~  Lv21 Lv23 

+-+- 

1  1 - =  
Lv21 

when w2 >> W I  

where e = 2.71828. Similarly, 

when w2 >> w3 

The gasket conductance  becomes 
G = G ~ + G J  

where 
d3 

G3 = ug3- 
W S  

as previously defined, but like Lgap2, G2 also needs a cor&tion to account  for the vertical surfaces in 
the  gap 2 region. The correction takes the form of a conductance in parallel so it increases the original 
conductance d u e .  

when w2 >> w1 

when 202 >> w3 

3 Circular Viewing Apertures 

3.1 Uniform  Magnetic Field Coupling 

A second type of aperture commonly  found in Faraday  cages  is the circular aperture. These apertures 
are typically used to view the contents of the Faraday  cage as seen in Figure 1. Let us ignore the effect 
of the cover or content geometry on the I? field and simplify the problem to  that of a circular aperture in 
an iniinite ground plane as shown  in Figure 14. In this section we will  conduct several levels of bounding 
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Figure 14. Circular Aperture Driven  by H Field 

analysis. First, we find the voltage  on a conducting loop  positioned at the  aperture, which intercepts 
all of the flux entering  the Faraday cage through the aperture.  The advantage of this analysis  is that 
we need  knowledge of only  one parameter:  the  aperture radius. As we consider apertures  with larger 
radii,  the above bounding voltage  becomes too high to be  useful. Therefore, we take  into account the 
distance between the  aperture  and  the  actual location of a conducting loop, but we still require that the 
loop intercepts all of the flux  passing through a surface surrounding the aperture at this given distance. 
This analysis  requires  knowledge of two parameters: aperture radius and distance. The  distance and 
radius may  be  such that this  bound is  al$o too high to be useful, so finally, we calculate the voltage on a 
conducting  loop  accounting  for both  the distance between the conducting loop and  the  aperture  and  the 
area of the loop. 

Before we begin the analysis, let us  examine what is  happening  physically. Figure 15 shows the  top 
view  of a circular aperture illuminated by a $directed, uniform H field.  Because the electric current flows 
around the  aperture symmetrically, y = 0 is a plane of symmetry for the H field. The H field enters  the 
Faraday  cage through  the  bottom half of the aperture (y < 0) and leaves through the top half (y > 0). 

--t 

+ + 

We begin the analysis by solving  for the magnetic scalar potential q5m when a uniform H field (Ho) 
exists on  one  side of a circular aperture. q5m is related to the H field  by the equation. 

i! = -vq5m (18) 
and satisfies  Laplace’s equation (V2q5, = 0). 

In order to model a circular aperture having the radius of a, we use the  oblate spheroidal coordinate 
system (t,C,p) shown  in Figure 16, where (0 5 < 5 l), (-oo < 5 < oo), and (-T 5 p < T )  [6]. These 
choices  for the ranges of coordinates are  appropriate for the  aperture problem  because the coordinates are 
continuous throughout the region  where the field  exists. The oblate spheroidal coordinates are  related to 
the Cartesian coordmates by the following  equations: 

x =  a J1+52\/1_F2cos p 
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Figure 16. Oblate Spheroidal Coordinate System 
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y = a J G d s s i n p  
z = a<< 

The solution of Laplace's equation in this coordinate system takes the form  of 

4m = x x (A'P,"(<) + B'QT(J)) (AP,"(j<) + BQT(jjC)) (CWmcp) + Dcos(mcp)) (20) 

Where P," and QF are  the associated Legendre functions of the first and second  kind  respectively, and j is 
m n  

J--r. 

In  the upper  half-plane, far away  from the  aperture, = @Ho. Therefore, using equation 18, we find 
by inspection that 

where y is the Cartesian coordinate. Converting to oblate spheroidal coordinates using equation 19, we 
obtain 

In  the lower half-plane, far away  from the  aperture, I? = 0. Therefore, 

+m(< = +a) = -HOY 

4m(< = +a) = -Hoa[(l - t2)(1 + c2)]4 sinp 

(bm(< = -m) = 0 

* .  

* 

First we note, that because  of symmetry exhibited by the circular aperture,  and in order to match 
the incident field in the upper half-plane, only the m = 1 and n = 1 modes  have  non-zero  coefficients in 
equation 20. Further, the coefficient of cos(mp)  must be  zero. The potential must  be finite at < = 1, 
which  means that  the coefficient B' must  be  zero. We are left with 

4 m  = P:(<)  (AP: ( j<)  + BQ: (j0) sin CP 

Substituting the  actual expressions for the associated Legendre functions, we obtain 

dm = (1 - c2)+ j ~ ( 1  + c2)+ + ~ ( 1  + c2)+ arccot c - sinp [ ( l + <  )I 
Letting < +. +a, we find that j A  = -Hoa. Letting C +. -a, and using the proper  branch cut SO that 
arccot(-<) = T - arccot(+<) we find that B = -jA/r. Therefore, 

In order to use the formulas found in [7] for gradient, we make the substitutions < = sinhr], where 
(-a < r ]  < +a), and c = cos8, where (0 5 8 5 7r/2), to obtain 

1 sinhr] 
T cosh2 r] 1 q5m = - Hoa sin 8 cosh r ]  sin p arccot (sinh r ] )  + - - 

To  find the maximum voltage that could appear on a conducting loopwithin  the container, we postulate 
that a conducting loop positioned at  the  aperture intercepts all of the H field  flowing through half the 
aperture. Using equation 18 to find the i j  directed H field  gives 

Hoa sin 8 sin p 1 1 - - sinh r] - - sinh r ]  arccot (sinh r ] )  + - + 
a(cosh2 r ]  - sin2 8)+ T 7rcosh2 r] 

Letting r ]  ----f 0, we find that H,, in the  aperture is 
2 HO sin 8 sin p 

H,, (0,8, 4) = 7r cos e 
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In cylindrical coordinates, p = acoshqsind. In the  aperture, therefore, where q = 0, p = asind. 
Substituting, in order to convert H,, to cylindrical coordinates we obtain 

Next we  fmd the magnetic flux (@) flowing into  the Faraday cage through the  aperture by integrating 
B, = poHz over the bottom half of the  aperture. 

@ = (-2.2)po 

= poHoa2 
The maximum  voltage is 

- aHo 2 - - Poa at 
Equation 24 can be used if lightning attaches to the  cart more than  an  aperture diameter away  from the 
aperture.  The H field due to the lightning current can be averaged  over the  aperture  area to determine 

+ 

HO. 

3.2 Lightning  Attaches to Aperture  Edge 

The worst-case scenario involving lightning alone  is if the lightning arc  attaches to  the edge of the 
circular aperture, as shown in Figure 17. Later, we  will discuss a case  even  worse than this one, but which 
requires that a wire be present to conduct lightning current across the  aperture. If the  aperture is filled 
with a dielectric plunger so that a wire cannot fall across the aperture, or if there is  some other reason that 
the wire scenario cannot occur, then this is the appropriate worst-case  for the circular aperture. 

Physically, the current and magnetic field  behaves as shown in Figure 18. We assume the direction of 
current flow to be from the attachment point toward the lightning source along the  arc channel. Therefore, 
current flows  on the ground plane around the aperture  and toward the attachment point. The H field 
enters the Faraday cage through the bottom half of the  aperture (y < 0) and leaves through the  top half 
(y > 0). For this case, the i? field cannot be averaged across the  aperture, since in the vicinity of a current 
source I ,  the field  behaves as - I 

(we  have temporarily assumed that  the origin is at  the  arc position on the edge of the circular aperture) ’. 
In Appendix C, however, we  show that by restricting the analysis to include  only the m = 1 mode, we can 
use  uniform  field results if  we replace HO by H due to  the lightning current evaluated at the center of the 
aperture, namely, 

I 
Ho + - 

2na 

Poa 

H=@- 
2TP 

+ 

Making this replacement in equation 24 we obtain 

vmax = Kdt 
If we include all of the modes,  using equation C-4, we obtain 

I n  previous memorandums we averaged I f y  over the aperture diamet,er. Averaging requires knowledge of the arc radius,  it 
over-estimates V,,, and it, cannot, be rigorously just,ified. We t,herefore, changed the  analysis to t,he met,hods outlined in 
Appendices c and D. 

32 

1 

c 



t 

I 

Filament 
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Figure 18. Physical Picture of H Field due to Current Attached to Aperture Edge 
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d l  
V,, = w(0.6478)-  at 

Therefore, in the  aperture, including only the m = 1 mode underestimates the voltage by 23%. As  we  move 
(25) n- 

away  from the  aperture,  this  error becomes smaller. Because the uniform  field excitation  with  the above 
substitution yields  good results and is  probably  more familiar to  the reader we  will continue to develop the 
uniform  field results in the main body of this  report to demonstrate the procedure, but will  use equations 
from  Appendix C as appropriate. As an example calculation, if  we assume an aperture having a radius of 
a = 5 cm, then  substituting  in  equation 25, V,, = 0.6478 x 8.0 kV = 5.2 kV  when  worst-case lightning 
strikes the edge of the aperture. 

If the conducting  loops inside the cage  were physically constrained so they were guaranteed to be  some 
distance from the  aperture, we could take  this  distance  into account when calculating V,,. Assume that 
the conducting  loops are constrained so they  cannot break the surface q = vo where qo < 0. The field 
enters the  aperture  and crosses the v = qo surface as shown in  Figure 19. Revisiting equation 23 when 
q = qo we obtain 

Ho sin 8 sin p 1 1 - - s iAvo - - sinhqo arccot(sinhqO) + - + 
(cosh2 qo - sin2 e) f n- 

Substituting for Ho, and converting back to  the ( E ,  e,  p) coordinates to be consistent with the appendices 

We note that  the coordinate in the appendices  range  over positive values in the region of interest, while 
here the coordinate ranges over negative values. We re-write the above  changing the sign of 5 and 
remembering the branch cut definition arccot( -e) = n- - arccot(+() 

which is the same as equation C-3. 

In our example, we  will assume that  the conducting  loop  is constrained so that  it never gets closer than 
ztop = 10 cm  from the aperture. Therefore, using equation 19, (-eo) = zt,/a = 2.00 and  substituting  in 
equation 26, we obtain 

8I  
Vm, = %[0.152], 

I1 

So for the most-likely  case of the  arc  attaching to  the edge of the a = 5 cm aperture, V,,, = 0.152 X 8.0 kV= 
1.2 kV.  For  convenience,  however,  whenever we are calculating the  total flux through a quarter spheroid 
in the future, we  will  use the fit function (equation C-5), which  is 

WL. 

V,, = w [(0.4124) arccot eo - - ( o . o ~ o ~ ) ]  dt d l  
T 1 +e; 

One question that arises is that  the above analysis was conducted in freespace, while the Faraday  cages 
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are usually filled  with parts made of metal. If the  metal pieces are highly conductive, such as aluminum, 
or steel and are oriented such that  the normal of the metal surface is parallel to  the C0 surface normal, 
the metal will tend to prevent the H field  from  crossing the Co surface. The free-space analysis will be a 
bound for this situation. If, on the other  hand, the metal pieces  have a high permeability, such as the soft, 
laminated, iron used in transformer cores or ferrite, or if they  are conducting as before, but  are oriented 
such that  the normal of the  metal is perpendicular to  the Co normal, the metal will tend to increase the 
amount of H field  crossing the surface. The free-space analysis will not bound this situation. It is possible 
to do analysis for this  situation by  imposing a perfect magnetic  conductor (PMC) boundary condition at 
c0, but  thought to  be unnecessary, since we have  never  seen this second situation in practice. 

-+ 

--t 

Finally, we consider  specifics of the loop geometry.  Far  away  from the  aperture - at least the  aperture 
diameter (2a)  away - we can  approximate dm in terms of the magnetic dipole moment my. 

- m y r  sin 8 sin cp 
47rr3 

- 

where my = -2ayyHic,  ayy = 4a3/3 for a circular aperture, Hic = HO (the  short circuit field  on the 
interior side of the  aperture,  anticipating  that we  will eventually replace HO with the  term I/2.ira) and r ,  8 
and cp are  the spherical coordinates. The i directed H field  is calculated by applying equation 18. 

my sin 8 sin cp = +  27rr3 

The 5 and @ components of H are similarly computed: 

H,"" - - 
2a3 H~ 

- 
37rr3 

The largest component  is H,"=, so we  will orient the loop to maximize this component. If the loop is 
in the vicinity of a piece of metal, we must  double this value  because the H field  from the image in the 
conductor  will add  to  the direct field. If it is in a corner formed  by  two  pieces of metal we must quadruple 
the value. As shown in Figure 20, we  will assume the loop is in the vicinity of a single piece of metal. 

The magnetic flux is, therefore, 
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Figure 20. Aperture Approximated by Magnetic Dipole 
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Figure 21. Lightning Current Guided  Across Circular Aperture by Wire 

Substituting for HO we obtain 
poa 4 a d l  vm, = --- 7r 3 T T 3  AL0,at (28) 

assuming, as before, that  the loop is 10 cm  below the  aperture (a  = 0.05 m, T = 0.1 m)  and, additionally, 
that the loop area is Aloop = 0.0025 m2, V,, = 8.0 kV x 0.424 x 50 m-2 x 0.0025 m2 = 0.424 kV. 

3.3 Lightning  Guided By Wire  Across  Aperture 

The worst-case, but highly-unlikely,  scenario is shown in Figure 21. It requires the presence of both 
a wire,  which  has  fallen across the  aperture,  and worst-case lightning, which strikes the wire. The wire 
guides the lightning current across the  aperture  and causes an Hz field in the plane of the  aperture. 

if IyI + b 

Using equation D-2: 

@=-[  (?) ] lJoIa - - 1 
7r 

We can get an expression for the voltage on a conducting loop located at the  aperture and intercepting all 
flux entering half the  aperture. 

d l  
(29) 

T 

As an example let us again assume that a = 5 cm and b = 1 mm.(the radius of a typical wire),  then 
V,, = 8 kV x(5.0) = 40 kV,  which is large compared to the result when the lightning current attaches to 
the edge (5 kV). 

If we  now take distance between the conductor loop and the  aperture  into account, but allowing the 
loop to integrate all of the flux crossing a Co surface we can use the fit function of equation D-3 to obtain 



I A 
As an example let us  assume that a = 5 cm, that ttop = 10  cm  from the  aperture so co = 2.00 and  that  the 
wire is a filament of zero radius (b  = 0). V,, = 8 kV x [0.112 + 0.427 + 0.2601 = 6.4 kV. 

L \  

a. 

Finally, at sufficient distance away  from the  aperture, we can  use the dipole moment and  equation 18 + 
to calculate the H field at  the loop location and take the  area of the loop into account. 

- - myr sin 8 sin cp 
47rr3 

From equation D-1, 

Therefore, 
my = -21a2 

H,. = -- ~ A n  
dr 

my sin8 sin cp 

a2 I 
7rr3 

- - 
27rr3 

H,", - 

and allowing the field to double inside due to  the presence of metal pieces 

= Pu,2H,""Aloop 
a21 

= Po2--A10, 
7rr3 

The equations developed in this section can also be used to analyze the  type of sensor  shown in  Figure 
2.  Since the plunger is  made of a non-metallic material, we can ignore its effects and analyze the hole 
through which the plunger fits as a circular aperture. Typically, a = 1.0 cm  for these types of sensors, so 
using equation 25, (because the presence of the plunger prevents the worst-case scenario of a wire falling 
across the  aperture), we obtain V,, = 1.04 kV, without needing to take loop position or geometry into 
account. 

3.4 Uniform Electric Field Coupling 

Only  magnetic field can  couple through a narrow slot - there is  no significant electric field  coupling. > <  

Electric field  can  couple through the circular aperture, however, and we  will examine electric field coupling 
in  this section. The analysis of this section has many similarities with Section 3.1 and uses the method 
outlined in [SI.  We ignore the effect of the cover or content geometry  on the E field and simplify the 
problem to  that of a circular aperture in an infinite ground plane as shown in Figure 22.Figure  .23.  shows 
what is  happening  physically. An E field  normal to  the aperture  enters  the Faraday  cage and induces 
voltage on a wire  inside.We  begin the analysis by solving for the electric scalar potential 4 when a uniform 

---f 
4 ,  

+ 
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Figure 22. Circular Aperture Driven by E Field 
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Figure 23. E field  Coupling Through Aperture 
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Figure 24. Wire Touching Center of Aperture 

E field (Eo), exists on  one side of the  aperture. C$ is related to the E field  by the equation 
--t 

E = -VC$ (33) 
and satisfies  Laplace’s equation. We can again use the oblate spheroidal coordinate system shown in Figure 
16. . Symmetry of the geometry and the form of the incident field  makes the coefficients of all modes 
in the general series solution (the same type of series as shown in equation 20) to be zero  except for the 
coefficients of m=O, n=l. Matching the  potential at z = +00, where C$ = ET cos 6 and at z = -00, where 
q5 = 0 yields 

C$ = aEo[ < - - (C arccot < - 1) 

Note that in the -2 region, < is negative and  the branch cut definition  is arccot(-<) = T - arccot(+(). We 
imagine that lightning strikes the building where the Faraday cage  is located causing a  voltage  difference 
between floor and ceiling and immersing the cage  in  a  uniform E field. In order to calculate the E 
field, therefore, we need  specifics of the enclosing structure. This is  markedly  different than  the H field 
penetration, where we only  needed the characteristics of the lightning current itself. 

[ a  1 (34) 

To obtain a solution for the potential without having to account for building characteristics, Appendix 
E examines the case where  a  wire touches the center of a circular aperture  and lightning strikes the 
wire. The wire is prevented  from entering the  aperture by a sheet of transparent  material that covers the 
aperture.  This case is  shown in Figure 24. 

Manipulating equation E 6 ,  we obtain 

Returning to our example  where a = 5 cm and b = 1 mm, we assume that A = 3 mrn, which is a typical 
thickness for a transparent viewing port cover.  We note from Figure 26 that for gaps of approximately 
5 cm, Eb = 10 kV/cm, so Eba = 50 kV. V,, then is 30.5 kV,  which  is large, but is bounded by the 
wireacross-aperture case (40 kV) discussed  previously. 

Next we use equation E10 to obtain 



If we take our observation point to be 10 cm  below the aperture as in previous examples ((0 = ztop/a = 2.00) 
and  substitute in equation 35 we obtain V,, = 1.2 kV. This is a smaller  voltage than  the wire-across- 
aperture case (6.4 kV) discussed  previously. 

It is interesting to note that in equation 3 4 ,  if  we set 
3 r / 2  Eo = E b  
(2alb) 

(where the quantities on the right hand side are defined  in Appendix E), we find that the uniform  field 
solution preserves the far field dipole solution found in equation E 7 .  

4 Diffusion 

A low-frequency, magnetic field can penetrate a finitely-conducting  wall of a Faraday cage  by  means 
of diffusion.  Usually,  when the conductivity of the wall  is  high,  like that of aluminum, the voltage due to 
diffusion is negligible,  even if the wall  is thin. We include the effect  here to document the equation and 
demonstrate that  the voltage is  small. 

The worst-case situation for  diffusion  is if lightning current flows near a conducting wall,  on the other 
side of which is a cable loop having a length along the wall of 1 as shown in Figure 25. Note that  the loop 
could be formed  by a cable in combination with the wall, so the voltage induced between the cable and  the 
wall due to  the magnetic field  diffusing through the thickness of the wall  is calculated in accordance to  the 
following  formula  for  non-magnetic  wall materials: 

where T = ts /  (4t) ,  t d  = pa2. The peak  voltage is 

41 I 

where g is the conductivity of the wall, A is the  thckness of the wall, I is the peak lightning current  and e 
r.eaA2 

is the base of the  natural logarithm (2.718). 

v d  = - (0.54) (36) 

Let us assume that  the wall of the Faraday cage  is  made of 6061 aluminum (0 = 2.6 X lo7 (R - m)-’) 
and has a thickness of 1.5 mm. Assume that  the length of the cable I is approximately 0.3 meters. With 
the above parameters V d  = 260 V. This is  much  smaller than  the kilovolt range of the other effects. 

5 Standoff 

Once the voltage  available  on the inside of the Faraday cage is calculated, we must determine if the 
electrical insulation that exists inside the Faraday cage, such as air gaps and insulation around wires,  will 
hold off the voltage and keep current from  flowing onto the sensitive contents. Because there is a wide 
variety of insulating material present inside the Faraday cages, the only insulation that we will  discuss 
here is that provided  by an air gap because that  type of insulation is common to all. In determining the 
amount of voltage that  an air gap will  hold off, we use the information provided  in [8] for needlepoints 
because needlepoints require the least amount of voltage to breakdown, and therefore, provide a worst-case 
estimate; in other words, if the needlepoint gap won’t breakdown, other types of gaps won’t  breakdown 
either. The data from [8] is  shown in Figure 26 for  convenience. 
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E field when  breakdown  occurs  between two needle  points 
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Figure 26. E field  Required to Breakdown a Needle Point Gap 

45 



As an example, if the maximum  voltage  inside  a Faraday cage  is determined to be 3 kV and a critical 
air gap is measured to be 15 cm, we  see  from Figure 26 that  the air gap is expected to  stand off 0.65 MV/m 
or 97 kV  (0.65  MV/m x 0.15m) so we don’t expect the air gap to break down. 

6 Burnthrough 

Burnthrough is associated with the continuing current component of lightning that occurs  in late 
time after the leading edge of the lightning waveform. The lightning arc becomes so hot that  it melts 
the metal at the  attachment point and forms  a  hole. The lightning increases the size of the hole by 
moving around the hole edge and continuing to melt the metal. Unpublished tests performed  for Sandia 
by the Bundeswehr  Universittit  Munchen (German Armed Forces  University in Munich)  where  worst-case 
continuing current was attached to plates of various metals indicate that lightning will not burn through 
a  0.1875  inch thick steel plate,  but it will burn through a 0.1875 inch  thick aluminum plate quite easily. 
The burnthrough holes are on the order of 1 cm in diameter. Fortunately, a standoff distance imposed 
around the sensitive contents helps  in this  situation since it is unlikely that lightning will detach from the 
edge of the burnthrough hole, pass through the hole and  attach  to contents several hole diameters behind. 
If standoff  is not imposed and  the sensitive contents lie directly behind the hole, it is not clear what will 
happen. A  single test on a flat cable lying 0.2 inches behind a burnthrough hole indicates that the voltage 
induced  on the cable is  less than 50 volts [9]. 
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Figure 1. Lumped Circuit Model of Transmission Line 

Appendix  A. Transmission Line Model 

In this appendix we  will examine approximations of the transmission line models in various limits in order 
to show  how simplified circuits follow naturally from  more  complex  analysis.  Using techniques described 
in [A-l] we can obtain an expression  for the voltage along a transmission line, which  is driven by a current 
source I at z = 0 and is shorted at z = h and z = -h. A time dependency of is assumed. 

V ( z )  = "I sinh(yh) sinh y(h + z )  
sinh(2yh) 

V ( z )  = "I sinh(yh) sinh y(h - z )  
sinh(27h) 

where - h < z < 0 

where 0 < z < +h 

If the transmission line is lossless, y = j w d a ,  which  is the propagation constant  and 20 = d m ,  
which  is the characteristic impedance. C, the capacitance per unit length, is expressed in terms of the slot 
parameters as 

~ . ,  

where E is the  permittivity of the  material filling  &e siot (8.854 x Farads/meter for  free space). Let 
us calculate some of the above parameters at w = 2 x lo6 radians/second for a slot having the following 
dimensions: w = 1.0 mm, d = 25.0  mm and 2h = 500.0 mm. C = 0.255 nF/m,  and Ltot = 43.6 nH/m so 
y = .0067 radians/m. Since y is so small, the  sinh(yz) terms in equation A-1 can be replaced by their 
small argument approximation (yz) yielding 

V ( Z )  = -y(h + 2) 
2 0 1  
2 

V ( Z )  = -y(h - Z )  
2 0 1  
2 

where - h < z < 0 (A-2) 

where 0 < z < +h 
These equations state  that  the voltage is zero at z = -h, increases linearly to  the value of jwILtoth/2 
(substituting for 20 and y ), and  then decreases linearly to zero at z = +h. Recognizing that  the expression 
j w I  in the frequency domain is equivalent to d I / a t  in the time domain, we have obtained 

d l  
at vp,, = Ldot- (A-3) 

where Lslot = LtOth/2. 

n o m  a circuit point of view, if  we replace the transmission line by the lumped circuit shown  in Figure < ?  

1, we note that  at w = 2 x lo6 radians/second we have the impedance of the capacitance (-j7.84 kR) in 
parallel with the impedance of the inductance ( + j O . O l l  0). Over  five orders of magnitude difference 
between the two impedances implies that  the shunting capacitance can be ignored without affecting the 
results. 

If the transmission line is  lossy (accounting for the conductive gasket), since y has a large, real part, we 
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. 

can replace the  sinh(yz)  terms in the equation A-1  by eYz/2 yielding 

where - h / 2  < z < 0 64-41 

where 0 < z < +h/2 

- - - ZOI 
2 

where we have  changed the upper and lower range of z to ensure that we stay away  from *h where  our 
approximation of sinh(yz) doesn’t hold.  These equations state  that  the voltage at  the current source is 

and  that  the voltage falls off exponentially in each direction toward the teminating bolts. 

A.1 References 

[A-1]P. E. Mayes, Electromugnetics for Engineers, Edwards Brothers, Inc., AM Arbor, Michigan, 1965, 
pp.1-103. 
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Appendix B. Voltage  with Lossy Gasket 

Here we assume that a  lossy  gasket fills the slot and  that  the decay length in the gasket is sufliciently 
short  that we can ignore the ends of the slot when it is  driven at  the center with current Io. We treat 
the problem as two  dimensional in  the slot interior and  it is thus convenient in this section to  take  the x 
coordinate along the slot length, the y coordinate in the slot depth direction, and  the z coordinate in the 
slot width direction. The fields are taken as independent of z in the slot interior. The problem  is set  up 
with -cc < x < 00, 0 < y < d, and 0 < z < w. We symmetrize about y = 0 and  extend the region to 
-d < y < d. This  symmetrization requires us to double the drive current I = 210. In the interior region 
there is  only E,, Hz ,  and HV. Maxwell’s equations with  time dependence ejwt are 

V x = -jwpg& 

V x ~ = J + ( a g + j w ~ g ) E  
where pg is the magnetic permeability of the gasket, og is the electric conductivity of the gasket, and zg is 
the electric permittivity of the gasket. Eliminating the magnetic  field  gives 

V x V x E = V ( v . ~ ) - V 2 ~ = - j w p g J - j w p g ( a g + j w z g ) E  

Taking the divergence of the field to vanish (dE,/dz = 0), with only  a z component, gives 

(V2 + k z )  E, = j w p g  J ,  
where the complex  gasket  wavenumber  is found  from 

(& + $ + k:) E, = [-- l d  d 1 d 2  I (P )  
27rp P dP  dP P dY2 

p -  + -- + k; E, = jwpg16 (x) S (y) = j w p  I- 

The electric  field radiated by the filament  (two  dimensional  Green’s function), without boundary conditions 
is 

where Hf’ ( z )  = JO ( z )  - jY, ( z )  is the Hankel function of the second  kind. The y = f d  edges of the 
symmetrized  slot interior are taken as open circuits. This implies the boundary conditions 

Hz (x, fd) = 0 
The magnetic  field  is  found  from the electric field by means of 

Thus we want 

- (x, fd) = 0 
dY 



and 

L E, ( x , y )  + 0 ,  x + kc0 

The  total field can  thus be  expanded in the modal  series 

n=O 

Substituting  into the Helmholtz equation gives 

Using the orthogonality relation rd cos ( n r y / d )  cos ( n ' n y l d )   d y  = -bnnt 
2d 
E n  

where = 2 for n 2 1, but equals unity for n = 0, gives 

Integrating over a small distance  about the origin 

gives 

or 

Now  we want the value of the voltage 

V = -E,w 
at x = 0, y = d. This is  given  by 

where the sum 



n=l 
L n  

has been used. Note that  the asymptotic form for kgd + 0 is 

2 - 20 - jwpgw- In  2 

where 20 = (w/d) d m  w p  / (a s we ) is the characteristic impedance of the gasket filled stripline and  the 
reactive term results from the characteristics of the filament  drive.. 

7r (B-2) 

When kgd >> 1 we can take the solution to be asymptotically the sum of the incident field and a 
reflection in  the y = d boundary 

M 

v = wwpgIo H p  (IC, (2n + 1) d )  
- _  

n=O 
03-31 

Figure 1 shows a comparison of equations B-1 and B-2. As the conductivity becomes large, equation 
B-2 overestimates the voltage. 

4 .  
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Appendix  C.  Electric  Current  Filament  Normal to Plane at Hole 
Edge 

The lightning current I is positive z directed, it is attached to the edge of a circular  hole of radius a,  and 
is normal to  the plane containing the hole. The problem is to find the fields penetrating  the hole. The 
magnetic field is represented in terms of the scalar potential 

where  in  regions  free of current 

V2$, = 0 
Here we will  first  use  cylindrical coordinates to represent the short circuit field (the field with the hole 
shorted),  then  transition to oblate spheroidal coordinates to solve the  actual problem. The short circuit 
drive can be taken as 

I p sin cp I 
arctan ( ) = -- arctan [ - -- - 

2n pcoscp + u 27r 
where -n < cp' < n is the cylindrical coordinate with origin at the wire, 0 < p < 00 and -n < cp < T are 
cylindrical coordinates with origin at the  aperture center. The relations between the Cartesian (x, y, z )  and 
cylindrical (p ,  cp, z )  systems are 

x = pcos cp 

y = psincp 

z = z  

Ekpanding in cylindrical coordinates we can write 

27r 
m=l 

The  total  potential is taken as 

= 4 m , Z < 0  
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where c$m is the  potential  scattered by the hole. Continuity of the normal  magnetic field at the  aperture, 
the fact that  it vanishes  on the conducting plane, and  the vanishing of the normal  component of the short 
circuit field,  means that 

continuous at z = o 
dZ 

- (p ! 'p ,z )  = 0 ,  a < p < 00 
8 4 m  
dZ 

Continuity of the tangential component of the magnetic  field  in the hole  means that 

1 
$m(p>P?+O) = - ~ ~ E ( P , P )  , 0 < p < a  

If we immerse a PMC (perfect magnetic conductor) disc of radius a in a potential field 

1 
4; (P, 'p) = 54; ( E  'p) 

we will find the same  scattered  potential as  the hole  problem in the upper half space z > 0 and negative the 
scattered  potential of the hole  problem in the lower  half space z < 0 (the incident and scattered  potentials 
in the disc  problem are even  in z). We will, therefore, solve the PMC disc problem and use the results for 
the hole  problem. 

C.1 PMC  Disc  Solution  in  Oblate  Spheroidal  Coordinate  System 

The incident potential is taken as 

The relation between the Cartesian system (x, y, z )  and  the oblate spheroidal system (t, <, 'p) shown in 
Figure 1 is  [C-1] 

z = a<< 

where -1 < < < 1, 0 < C < a, and -T < 'p < T.  (Note the differences in the coordinate ranges shown in 
Figures 16 and 1). The relation between this system and  the cylindrical system is 



P 

Figure 1. Oblate Spheroidal Coordinate System Used in Appendix 
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Note that 

The general  solution of Laplace's equation in this  system is 

4m (C, <, 9) = x x [Amnp? (jC) + BmnQT ( j<) ]  [Cmnp," (<I + DmnQT ( 0 1  X 
n m  

[Em, sin ( m ~ )  + Fmn COS ( m ~ ) ]  
where j = f l  is the imaginary unit and P," and Q r  are associated Legendre  functions. The definitions 
of the special functions  corresponds to  that given  in [C2]  and [C-31. We eliminate A,, so the scattered 
potential decays as < + co. We eliminate Dm, so the scattered potential remains iinite along the z axis 
< = 1. We eliminate F,, by symmetry  and thus 

n=l  m=l 
where P," (<) = 0 for m > n has been  used. The  boundary condition on the disc  for the scattered potential 
is 

4m (0, I, 'P) = -4: ( E ,  'P) 
As a result of symmetry in the disc  problem, the boundary condition % ( p ,  cp, 0) = 0 for a < p < 03, is 
automatically satisfied. We  need to  expand the incident potential in the  aperture in order to match the 
boundary condition. Letting < = 0 and p/a  = d g  in the cylindrical coordinate expression gives 

Noting that [G4] 

and [C-21 

gives 
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and  thus 

c 

1 

Applying the boundary condition on the disc and noting the orthogonality relations 

[I sin (my) sin (m'p) dp = d m m ~  

and [C-21 

1: sin (mp) cos (m'p) dp = 0 

gives 

Reversing the sign of the  scattered potential to find the result appropriate to  the hole  problem  yields 

C.2 Dipole Moment 

The field far from the  aperture is found  from the dipole  moment of the aperture. The asymptotic form 
of the Legendre function is [G2] 

where ( u ) ~  = J? (u + n) /I?(..) = u. (u + 1) . . . (u + n - l), ( u ) ~  = 1, and l? (x) is the gamma function [C-21. 
Therefore, the n = m = 1 term is dominant far from the  aperture.  The values of the denominator Legendre 
functions are given by [C-21 

The function for n = m = 1 is actually 
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where 7r/2 > arccot < > 0 for 0 < < < 00. Thus 

and we can write 

Ia2 y 
37T2r3 

N -- 

where we have  used y - a< dl- f 2  sin p and T - a< as c + CQ. The potential of a magnetic dipole is 

Thus the dipole moment in this case  is 

It is interesting that for a plane exciting field the dipole moment of an  aperture is [C5] 

+ m = -2 cy m -  H s c  * +  

The polarizability for a circular aperture is a diagonal tensor 

+ m = -2crmHSC 
+ 

and has the value [G5] 

This implies that 

+ I H s c  = ---ŷ  
27ra 

which  is the value of the field exactly at the middle of the circular aperture. 

C.3 Magnetic Flux Through  Quarter  Spheroid 

The magnetic flux crossing  one quarter of an oblate spheroid is now found. The magnetic flux crossing 
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Using the above eigenfunction expansion and noting that [C-21 P," ( - E )  = (-l)m+n P," (t) gives 

The integral can be carried out as 

where B (p, q)  is the  beta function [C-21. Note that for m odd 

The recurrence relation for the derivative of the Legendre  function  is [ G 2 ]  

(1 + C;) jQ? ( K O )  = (m + n) (n - m + 1) 41 + cgQ;-' ( K O )  - ~ C O Q ~  ( X O )  

This yields the expression for the magnetic flux through the half spheroid 

Note that for m = 1 only we use I .  

to find 
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The limit c0 -+ 00 is the flux through a quarter sphere by the dipole field 

l a  
3r @/ (POId..) = 3c, - - 

C.4 Magnetic Flux Through Half Aperture 

Taking C0 = 0 in the preceding formula  gives the magnetic flux through half the  aperture 

The relation for the ratio 

gives 

Therefore 

To accelerate the sum we note that  the asymptotic form of the summand is 

Using the known sum [C-2] 

we can write 
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Numerical evaluation yields 

ass- (0.6478) 
lr (C-4) 

It is interesting that  the m = 1 term of the original sum  (without the subtraction of the asymptotic form) 
gives 

ass- (0.5) 
lr 

This is the result of the plane field term (m = 1). 

C.5 Fit Function  for  Magnetic Flux Through Quarter  Spheroid 

It is useful to have a simple fit to  the flux through the  quarter spheroid as a function of Co. Using the 
distant dipole moment behavior (along with arctanCo - l / C o ,  Co + a) and  the flux in  the  aperture limit 
(along with  arctan (0) = lr/2) we can write 

Fo- arccot Co - 
7T n- 

where 

The various approximation discussed in the paragraphs above are summarized in Figure 2. Note the 
asymptotes shown by dotted lines on the left side of the plot indicate the flux integrated over  half the 
aperture  taking  into account only the  m=l mode (0.5) and  taking  into account the higher order modes 
(0.6478). Note also how  well the fit function of equation C-5  (solid line tagged with open squares) 
approximates the exact flux of the more-complicated equation C-1 (solid line). 
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Appendix D. Electric  Current  on  Wire  Across  Aperture 

The current I is now taken to be positive x directed and bisects the  aperture along the x axis. We fist  
assume the current exists on a zero radius filament. Later to find the flux passing though half the  aperture 
the  actual radius of the wire  will be required. 

D.1 Filament  Solution  on  Polarized  Magnetic Disc 

There is a discontinuity in magnetic potential introduced at the zero radius filament. In the  actual 
problem the z directed field is even  in z (the magnetic potential is thus  odd in z).  The boundary conditions 
can be taken as 

continuous at z = o 
dZ 

It is  convenient to change the symmetry of the problem  in a way similar to  the preceding section by 
taking the potential to be even in z 

4m ( P I  cp, fO) = (I/4) S W  (cp) , o  < P < a 
This is the problem of a PMC disc of radius a, charged to two  different magnetic potentials. The boundary 
conditions on the  actual surrounding plane are obeyed via symmetry. The field in the upper half plane 
z > 0 is the same as the original filament  problem. The field in the lower  half plane is minus the filament 
problem. The solution to Laplace's equation in oblate spheroidal coordinates is again 

n=l m=l 

Applying the disc boundary condition on the potential 
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1 = I i l  P,"(<)<,mandnodd 

= 0 , otherwise 
The integral can be carried out by  means of the identity [D-l] 

where the generalized  hypergeometric  series 

terminates when any one of the first three arguments is  zero or a negative integer (for integer order and 
degree). The result for odd integer  degree and order is 

The potential in the filament  problem  for z < 0 is thus 

D . 1 . 1 dipole  moment 

The dipole  moment contribution to the potential is  found by retaining only the n = m = 1 term 

Thus the dipole moment is 

+ m = -21a2y^ 

D.1.2magnetic flux through  quarter  spheroid 

The magnetic flux through one quarter of a spheroid at = eo is 
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2 c a n  

= --poaI (272 + 1) (n - m)! 2 jQE’ ( X o )  [I’ p,“ @] 
7r m2 (n + m)! (l + QT ( jo )  

n,odd m,odd 
. 
. -  
z 

Note that  the n = m = 1 term gives 

D.2 Extension for Small Values of &, 

As the  aperture is approached so ---f 0 it is  very  difficult to sum the series  for the flux. As an alternative 
we assume that for small Co flux changes occur as a result of proximity to  the current filament  along the z 
axis. The field about  the filament in the y = 0 plane, for -a < z < a,  ignoring perturbations caused  by the 
boundary of the hole, is 

I 
27rZ 

H y ( y = 0 ) - -  

In spheroidal coordinates for cp = 0 (x > 0) this becomes 

If we consider the amount of magnetic flux between  two  spheroid  surfaces so and along the length of 
the wire -a < x < a on y = 0, we have 

where = E o  when x = a (the wire end) 

c 
to  = J3 

For small values of < (as the spheroid surface approaches the  aperture)  this flux change should be 
approximately the same as  the f lui  change crossing  surface of the spheroid. Thus we should be able to write 
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We take C1 to be the smallest value of 5 for  which the flux can be computed reliably from the series solution. 
For example, the value of the series including terms  up to N = 21 is . 

'P (0.5) = (2.0178) 
* lr 

The value including terms  up to N = 11 is (2.0092). Carrying out the indicated integration in 
I 

gives 

and  thus 

or 

If we take C1 = 0.5 and Co = 0.25 we find 

'P (0.25) / (poIu/lr) = 0.7599 + 2.0178 = 2.7777 
The value  determined  from the series at Co = 0.25,  for N = 21, is (2.7282). The value  determined  from the 
series  for N = 11 is (2.6777). 

Note that  the asymptotic form of the flux as C0 --t 0, predicted from the above formula, is 

J 4  'P/ (/.LOIU/T) N -In (2Co) + 1 + 1.13398 
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D.3 Displaced  Wire  Across  Aperture 

The  actual wire with  radius b is taken to be  displaced  upward  from the  aperture by distance b (so that 
its  bottom surface  is  flush with the aperture). The field  below the  aperture for y = 0 and -a < 2 < a,  is 
thus 

I H3/ (y = 0) = 
2 T ( Z  + b) 

In spheroidal coordinates for p = 0 (x > 0) this becomes 

I 
% (" "O) 2~ (act + b) 

The amount of magnetic flux between  two spheroid surfaces eo and el, along the length of the wire 
- a < x < a o n y = O , i s  

where  again 5 = to when 2 = a  (the wire end). Using the result 

and  the  identity from [D-1] 

- 1 @/a)  tan ( 8 / 2 )  + C - dc2 - P / a 2  , b2/a2 < C2 
@/a)  tan (e/2) + + 4- 

as well as 

gives 

* 

. -  
w 
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' 4  

. -  

1 , b2/a2 < C2 

Taking Co 2 b/a we obtain 

where 

The flux @b (C1, Co) was evaluated by numerical integration. The  extrapolated flux through t h  
spheroid was taken to be 

@ (0.5) = !&! (2.0178) . 
was used. 

D.4 Potential for Assumed  Charge On Polarized  Magnetic  Disc 

.e quarter 

The flux for the filament solution will exhibit a logarithmic singularity if  we attempt  to  take Co -, 0. 
To overcome this problem we first subtract an assumed solution that has the same singularity then  take the 
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limit. The flux associated with the assumed solution can  then  be  added back  for  a finite radius wire. 

First we determine  the  potential for this  assumed solution. We take  the  magnetic disc to have  fixed 
magnetic charge with assumed density (on each  side of the disc) 

In  the oblate spheroidal coordinate system  this condition is 

where we take Co --f 0 

Again the Laplace solution is taken as 

n=l m=l 

Inserting this into  the assumed magnetic charge condition, using orthogonality, gives 

Using the result [D-11 

= 0, m even 

we  have 

Using the result [D-l] 

as a  guide, we find  in the limit for degree and order as odd integers gives 
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. 
The potential in the filament problem for z < 0 is thus 

D.4.1 dipole  moment 

It is interesting to calculate the dipole potential in this case. The n = m = 1 term is 

where we have used the fact that jQi' ( j 0 )  = -2. The dipole moment is thus 

z a  = -Ia2y^ 

It is interesting that this is exactly half the  true result for the filament problem. 

D.4.2 magnetic flux through  quarter  spheroid 

The magnetic flux through one quarter of the spheroid = eo is 

Note that for n = m = 1 we have 

half the previous result. 
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D.5 Difference Flux Through Half Aperture 

Now  we take the difference flux 

A @ = @ - @ a  

and let c0 ---f 0 

x I' P," ( E )  4 
where for both n and m odd we have 

Numerical evaluation of A@/ (po1a/.ir) = S has been carried out including terms  up  to n = N .  The value 
for N = 11 is 1.345023694. The value  for N = 15 is 1.355276395. The value  for N = 21 is 1.363722349. The 
original logarithmic divergence in @ corresponds to a 0 ( l /n)  term in the series for co * 0. The  subtraction 
of @a cancels this logarithmic divergence and is expected to lead to a 0 (l/n2) term in the summand for 
A@. The infinite sum  thus  should have the form 

S = S N + R N  
where the  partial sum (to n = N )  is SN and the remainder RN is taken to have the asymptotic form 

RN - C / ( N +  1) 
Using the N = 11 and N = 21 results we find 

C x 0.493644492 

S = 1.386160735 

(Note that, if  we had  taken the remainder  to have the form RN - C I N  + DIN2  - C/ ( N  - D / C ) ,  
and used all three values N = 11,15,21 to determine the coefficients, we obtain S x 1.386339736 and 
-D/C x 0.9513). This result produces  the value 1.355307954 for N = 15, which has an error of 3 X lo-' 
from the calculated value. Thus we take 



A@/ (pola/7r) = S z 1.3863 2 In 2 
as  the approximate value. 

It is interesting that if the n = m = 1 term is the only one included we obtain 

The limit eo = 0 gives 

A@/ ( p o I a / ~ )  - % 1.178 37r 
8 

D.5.1 half aperture  magnetic flux for finite  radius  wire 

To obtain the half aperture magnetic flux  for the finite radius wire we first integrate the assumed 
magnetic charge over the  appropriate surface from the wire radius b << a to the edge of the hole 

- p o l :  [In (2a/b) - I] , a >> b 

Adding the correction gives the  total flux through the half aperture 

@b = @: + A@ = POI- [In  (Bulb) - 11 
a 
7r (D-2) 

D.6 Fit F'unction  for Magnetic  Flux  Through  Quarter  Spheroid 

It is again useful to have a simple fit to  the flux through the  quarter spheroid as a function of c0. Using 
the  distant dipole moment behavior (along with arctanCo - l /co,  Co -+ oo), the flux in the  aperture limit 
(along with arctan (0) = x/2), and the extrapolated  asymptotic behavior when the wire radius is zero we 
choose 

(D-3) 

where the value of the flux  crossing the aperture'@b/ (pola/7r) = In (8a/b) - 1 , Co = 0 is  used to set 

Fl = In (tip,) - 1 
and  the  extrapolated  asymptotic behavior of the filament @/ (poIa/7r) - - In (C0) + 1.4408, b = 0, Co + 0 
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I . . . . . . .  

Figure 1. Plot of Various Flux Approximations When Wire Lies  Across Aperture 

is  used to set 

PI z 1.4446 

It is curious that we nearly have PI = In (Sp,) - 1 = PI, which has solution PI = 1.4532. Note that, 
although the contribution of the logarithm contributes a term -&b/ (uCo) as Co 4 03, this is taken to be 
small compared to the remaining contribution T/ (2C0). It is  believed that this contribution is actually the 
proper correction for the displaced line source in the hole. 

D.7 References 

i 

m 

[D-111. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, Academic Press, New 
York, pp. 147,  366,  796,  799,  998-1000. 
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Appendix E. Electric  Line  Charge  Normal to Hole 

In this section we look at  the voltages created interior to a conducting enclosure with a circular hole of 
radius a when a semi-infinite electric line charge q exists exterior to  the enclosure. This model is attempting 
to address the worst  case pre-return-stroke phase of the lightning channel development. The electric field 
penetrating the hole  is found. 

E.1 Decomposition of Exciting  Potential 

The electric field  is taken as the gradient of a scalar potential 

--t 

E = -V@ 
where 

v2@ = -&,/EO 

We ignore the presence  of a dielectric sheet in the hole and  treat  the media as free space; €0 X 8.854 pF/m 
is the electric permittivity of free space. The electric charge density is pv. 

If the  aperture is shorted the line source can be imaged in  the ground plane. Thus the  short circuit 
potential satisfies 

where p is the cylindrical coordinate and sgn(z) = 1 for z > 0 and sgn(z )  = -1 for z < 0. Thus the  short 
circuit potential is  given  by 

arcsinh{(R-z)/p} 

-4 [J -arcsinh(z/p) 
- du - J 

4 ~ ~ 0  -arcsinh(z/p)  -arcsinh{(R+z)/p} 

- -- [arcsinh { (R - z )  / p }  + arcsinh ( z / p )  + arcsinh ( z / p )  - arcsinh { ( R  + 2) / p } ]  
4'7rE0 

= - arcsinh ( z / p )  4 
2T€O 

The  total potential is taken as 



where 4 is the  potential  scattered by the hole. Continuity of the tangential electric field at  the  aperture, 
the fact that  the  total potential vanishes  on the conducting plane, and  the vanishing of the short circuit 
potential, means that 

d continuous at z = 0 

Noting that -2 is odd  in z gives 

a4 1 -z (P, +O) = -- (p ,  +O) , 0 < p < a 2 dz  
If we immerse a PMC (perfect magnetic conductor) disc of radius a in a  potential field 

1 
d2 (P ,  z )  = p s c  (P, 2) 

we  will  find the same  scattered  potential in the upper half space z > 0 and negative the  scattered potential 
of the hole  problem  in the lower half space z < 0 (the incident and  scattered potentials in the disc  problem 
are even  in z) .  

The  aperture potential then satisfies 

v24 = 0 
in the upper or lower  half  spaces. The boundary conditions are 

The boundary condition on the disc  for the  scattered potential is 

To obtain the  aperture potential in  the lower  half space z < 0 we reverse the sign of the disc potential 
4 + -4. 

E.2 Oblate  Spheroidal  Coordinate  Solution 

The  aperture potential 4 is  now expanded in oblate spheroidal coordinates 

n 

where the functions Pn ( j c )  are not included  since this  potential decays at infinity.  Also the functions 
Qn (<) are not included since it must  be finite at 5 = fl. Now using orthogonality [E21 
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a 

5 

and  the above boundary condition 

gives 

Thus for n even the coefficients vanish and for n odd 

The identity [E31 

yields 

. *  Thus 
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E.3 Potential  in  Aperture 

The  potential  in the  aperture is 

where 

using 

we can  write 

Using the identities [El] 

AnQn (j0) = - 
27rQ 
9 

we find 

-pn (case) = 1 sin  (8/2) {sin (8/2) + 1) 
n 

n,odd 
sin ( ~ / 2  - 8/2) {sin ( ~ / 2  - 8/2) + 1) 1 

Therefore we find 

Using  cos 8 = 6 

9 

or 
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where we have  used E = id-. The  actual potential in the  aperture problem for z = -0 is the 
negative of this result r )  -t -4 and  thus 

Note that as p + 0 we have 
\ I 

E.4 Local Geometry at Wire End 

Now we must consider how a finite potential is obtained as p + 0 when more realistic local geometry is 
taken  into account. The nonzero  wire radius b could be taken into account, along with the geometry of the 
wire end (rounded or flat), or we can take  into account the fact that  the  aperture has a dielectric window 
of some thickness A. Either approach involves evaluation of the  potential a small distance from the end of 
the line charge.  Using the above positive semi-infinite line charge potential representation, we can write  in 
the vicinity of the line source end 

4 - - [arcsinh { (R  - z )  / p }  + arcsinh (ZIP) + constant] 4 
4T&o 

We take  the constant to be -2 lnR+ ln (2a) and  thus write 

This potential now agrees with the pieceding form (n the  aperture plane t = 0 as'@ M q l n  (2a/p)  / (4m0).  
Alternatively for p = 0 we have 4 x q l n  (-a/.) / ( 4 ~ ~ 0 ) .  

Thus for p = b and z = 0 

6, % - In (2alb) 9 
4T&o 

Suppose the average breakdown strength 

Eb % 10 kV/cm (E-4) 
for a rod-teplane gap is used to set the charge level q (this is taken from Figure 1 for a spacing of 5 cm - a 
typical aperture  radius); the charge is reduced when the field  exceeds this level as a result of breakdown. 
The average field  in the  gap between the  tip of the surface of the wire and  the hole  edge  is 

79 



E field when  breakdown occurs between two needle  points 

0 5 10 15 20 25 30 35 40 45 50 55 
Gap Distance (cm) 

Figure 1. E field  Required to Breakdown a Needle Point Gap 
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c 

l a  ( E )  = - 4 E p  (P, 0) dP = d,J (a - b) = &/a  = In ( 2 4 9  
b - a  

since d, = 0 on the conducting plane. If this is set to  the average breakdown  field 

4 T E o U  

E b l n  (2alb) 

Let us  now take z = -A and p = 0 

the dielectric layer with electric permittivity E. The effect of this layer is to slightly increase the values of b 
and A. Because of the appearance  in the logarithm we do not expect it  to  be a large effect. 

E.5 Dipole Moment 

The Legendre functions behave as 

Therefore the n = 1 term is dominant far from the aperture. Using 

Thus the potential fa r  from the  aperture  (here we have introduced the minus sign d -+ -4 appropriate  in 
the lower  half space) is 

Q1 ( j c )  = < arccot < - 1 
where 7r/2 > arccot C > 0 for 0 < < < m. Thus the n = 1 term is 

Expanding for large < 
9 6  d, N --- 

STEO C2 
Now using z = a<< and r - a< as < ---f 03 gives 
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where the dipole moment is 

The potential values at various distances from the  aperture plane are now discussed. 

4 = - AnPn (t) Qn (jC) 03-91 

where again the minus sign has been introduced in the lower  half  space. Now on the negative z axis E = -1 
and we let = Co 

n,odd 

n,odd 

E.7 Fit  Function 

Note that as eo + 0 we expect with z = -aCo that (4mo/q) 4 - - In Co, Co ---$ 0. The actual 
value approaches (4.rreolq) q50 z In (./A) , eo = 0. The large eo limit from the dipole moment is 
(4mo/q) 4 - 1/ (2@ , eo + 00. Thus as a fit function we try 

Figure 2 shows a comparison of the series solution and  the fit function. 
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Figure 2. Plot of Various Potential Approximations When  Wire Touches Aperture Center 
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Appendix F. Legendre Functions of Imaginary Argument 

We  use the expansion [F-l] to evaluate the Legendre  function of imaginary  argument 

Qr ( j c )  = 2m+1 (-l)m (m + n)! ( g  + 1)"/2j-n-lU-n-m-l 

(2, 

* 
i 

& 

where F (a ,  b; c; z )  is the  standard hypergeometric function. 

F.1 References 

[F-1] E. W. Hobson, The  Theory of Spherical and Ellipsoidal Harmonics, Chelsea Pub. Co., New York, 
1965, pp. 113-114. 

84 



Distribution: 
4 

20 
20 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 

MS1152 
MS1152 
MS1152 
MS1152 
MS0453 
MS0447 
MS0479 
MS0479 
MS0479 
MS0479 
MS1152 
MS0405 
MS0405 
MS0405 
MS0405 
MS0830 
MS0492 
MS9018 
MS0899 
MS0612 

R. E. Jorgenson, 01642 
L. K. Wane, 01642 
M.  L. Kiefer,  01642 
K. 0. Merewether,  01642 
C.  L. Knapp, 02820 
J. 0. Harrison, 02111 
K. Oishi, 02113 
R.  D. Holt, 02113 
M. H. Abt, 02113 
J. P. Atencio,  02113 
M. A. Dinallo, 01643 
T. R. Jones, 12333 
Y .  T. Lin,  12333 
M. K. Fuentes, 12333 
T. D. Brown,  12333 
D.  H. Loescher,  12335 
K.  C. Chen, 12332 
Central Technical  files,  8945-1 
Technical Library, 09616 
Review & Approval  Desk,  09612  For DOE/OSTI 

1 Jim Nunley 
BWXT  Pantex 
P. 0. Box  30020 
Amarillo, TX 79120-0020 

85 


	Abstract
	Contents
	1 Introduction
	2 Long Slots
	2.1 PEC Walls
	2.2 Finite Conducting Walls
	2.3 Conductive Gasket
	2.4 Inductive Slot Terminations
	2.5 Varying the Slot Cross Section

	3 Circular Viewing Apertures
	3.1 Uniform Magnetic Field Coupling
	3.2 Lightning Attaches to Aperture Edge
	3.3 Lightning Guided By Wire Across Aperture
	3.4 Uniform Electric Field Coupling

	4 Diffusion
	5 Standoff
	6 Burnthrough
	7 References
	Appendix A. Transmission Line Model
	Appendix B. Voltage with Lossy Gasket
	Appendix C. Electric Current Filament Normal to Plane at Hole Edge
	Appendix D. Electric Current on Wire Across Aperture
	Appendix E. Electric Line Charge Normal to Hole
	Appendix F. Legendre Functions of Imaginary Argument
	Distribution



